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Abstract—We develop a covariance matrix describing the uncer-
tainty of mismatch-corrected measurements performed on the Na-
tional Institute of Standards and Technology’s electrooptic sam-
pling system. This formulation offers a general way of describing
the uncertainties of the measurement system in both the temporal
and frequency domains. We illustrate the utility of the approach
with several examples, including determining the uncertainty in
the temporal voltage generated by the photodiode.
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I. INTRODUCTION

WE DEVELOP an uncertainty analysis for the electrooptic
sampling system at the National Institute of Standards

and Technology (NIST) [1]–[3] that can be used in both the
time and frequency domains. We then use the system to measure
the complex band-limited Fourier transform of the electrical im-
pulse response of a fast photodiode to 110 GHz and characterize
the uncertainties in the measurements. These photodiodes, when
stimulated with a short optical pulse, are then capable of deliv-
ering well-characterized pulses to their electrical loads and can
be used to provide traceable calibrations for light-wave com-
ponent analyzers, sampling oscilloscopes, large-signal network
analyzers, and other high-frequency electrical instruments.

Most previous work on the characterization of electrical im-
pulse- or step-response waveform standards has been based en-
tirely on temporal measurements and uncertainty analyses and
only report single measurands such as pulse or transition dura-
tions [4]–[9]. In this case, the Guide to the Expression of Un-
certainty in Measurement [10] gives explicit guidance on eval-
uating and expressing the uncertainty of the measurands.

However, our system measures a multivariate quantity,
the complex band-limited Fourier transform of the impulse
response and the reflection coefficient of a fast photodiode,
and [10] does not provide any guidance on expressing the un-
certainties of multivariate measurands. In [1]–[3], we reported
on a complete mismatch-corrected frequency-domain photo-
diode characterization that includes the source impedance and
point-by-point frequency-domain uncertainties derived from
a Monte Carlo analysis. However, these frequency-domain
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Fig. 1. Sketch of the NIST electrooptic sampling system (modeled after
[1]–[3]).

uncertainties could not be used to determine the accuracy of
temporal quantities.

Some attempts have been made to transform between tem-
poral and frequency-domain uncertainties [11]–[17]. However,
these approaches either ignored or made significant assump-
tions about the correlations of the errors or focus on worst case
bounds, rather than uncertainty estimates.

Thus, we take a different approach in this work. Here, we use
standard statistical practice to estimate the covariance matrix
[18] corresponding to the multivariant quantity we report. We
still provide the measured amplitude and phase of the Fourier
transform of the photodiode’s electrical impulse response and
the measured impedance of the photodiode in the form of a re-
flection coefficient, thus completely characterizing the photo-
diode (our electrical waveform standard). However, in addition,
we now also provide uncertainties on these quantities in the form
of a frequency-domain covariance matrix that captures all of the
correlations in the measurement uncertainties. This approach
allows the uncertainty in the photodiode’s electrical spectrum
and impedance to be propagated through frequency-domain and
temporal mismatch-corrected calibrations of other instruments.
This was not possible with the approaches described previously.

II. NIST ELECTROOPTIC SAMPLING SYSTEM

Fig. 1 sketches the NIST electrooptic sampling system. The
mode-locked fiber laser emits a series of short roughly 100-fs-
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long optical pulses that are split by the beam splitter into an
optical “excitation beam” and an optical “sampling beam.” The
optical excitation beam excites the photodiode, which generates
a fast electrical pulse at its 1-mm connector. This is the electrical
pulse that we try to characterize with the system. That electrical
pulse is coupled onto the coplanar waveguide (CPW) by the
wafer probe, where it is terminated by a resistive load at the end
of the CPW.

We use the optical sampling beam to reconstruct the repetitive
electrical waveform generated by the photodiode at the on-wafer
reference plane in the CPW. We do this by passing the sam-
pling beam through a variable optical delay, polarizing it, and
then passing it through one of the gaps of the CPW. Since the
LiTaO substrate is electrooptic, the electric field between the
CPW conductors changes the polarization of the optical sam-
pling beam passing through it. We detect this change, which is
proportional to the voltage in the CPW at the instant at which
the optical pulse arrived there, with our polarization analyzer.
By adjusting the delay in the path of the sampling beam, we ad-
just the relative time at which the optical pulse in the sampling
beam reaches the surface of the substrate. We are thus able to
trace out the voltage in the CPW as it evolves with time.

To determine the magnitude and phase of the Fourier trans-
form of the impulse response of the photodiode, we de-embed
the wafer probe from the measurements. We do this by using a
frequency-domain vector network analyzer (VNA) to measure
the reflection coefficients of the photodiode and CPW load and
a two-tier VNA calibration to determine the scattering parame-
ters of the wafer probe. We then transform the temporal voltage
measured on the wafer into the frequency domain and translate
the measurements back to the coaxial reference plane by de-em-
bedding the probe head. This allows us to determine the voltage
in the frequency domain that the photodiode would deliver to a
50- load at its 1-mm coaxial port. The system and measure-
ment procedure are described in greater detail in [1]–[3].

We use photodiodes calibrated in this way to calibrate other
electrical measurement instruments. This is accomplished by
stimulating the photodiode with a short optical pulse and mea-
suring the electrical waveform the photodiode delivers to the
instrument we wish to calibrate. Since the magnitude and phase
of the complex Fourier transform of the photodiode’s electrical
impulse response and impedance are known, we can correct for
imperfections in the instrument by comparing what the instru-
ment measures to the voltage that the photodiode should have
delivered to it.

III. SOLUTION VECTOR

We determine the response of the photodiode with our
electrooptic sampling system at the frequencies

MHz MHz GHz, where
and . We then express the photodiode’s electrical
behavior in terms of the vector of frequency-domain voltages

that the photodiode will deliver to a perfect 50- load at the
frequency at its coaxial port when excited by a short optical
pulse that generates a picocoulomb of charge at its bias port,
and the vector of photodiode’s reflection coefficients at its

coaxial port. Since our electrooptic sampling system is not set
up to measure the absolute time delay through the photodiode,
we remove the linear slope of the phase response.

The resulting two complex vectors and offer a convenient
and complete frequency-domain description of the electrical be-
havior of the photodiode at its coaxial port when it is used as a
standard electrical source to calibrate electrical instrumentation,
including high-speed sampling oscilloscopes. These quantities
can also be used to derive the photodiode’s Thévenin or Norton
equivalent circuits [2].

We arrange these frequency-domain voltages and reflection
coefficients in a single one-dimensional (1-D) solution vector

with real elements given by

(1)

where

...

...
(2)

and

...

...
(3)

The elements of the vector contain a complete frequency-
domain description of the impulse response and impedance of
the photodiode to 110 GHz.

IV. COVARIANCE MATRIX OF

The variance of a single scalar measurand quantifies the
uncertainty in its measured value. Likewise, a covariance
matrix can be used to express the uncertainty of a vector
quantity [18]–[22]. Here, we express the uncertainty of
our voltage and reflection-coefficient measurements with
the covariance matrix of our solution vector , where

, and the superscript indicates
the transpose.
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The covariance matrix is defined by (4) [18]–[22], as
shown at the bottom of this page, where is the “expected
value” of and is defined by

(5)

where is the probability density function of [19], [20].
The th diagonal element of is the

variance of . The square root of this variance is the standard
deviation of . The sample estimate of is the standard
uncertainty .

The th element of is the covariance
of and . The covariance

of and is equal to , where is the correlation co-
efficient of and and satisfies . The sample
estimate of is . Thus, we see that is rich with
information: it contains the variance of each of the elements of

and all of the correlations between each of the elements of .

V. UNCERTAINTY PROPAGATION

To fix ideas, we will now summarize the rules for uncertainty
propagation with covariance matrices. These rules are treated
briefly in [10], and in greater detail in [18]. We begin with a
random vector with mean , and a vector that is a con-
tinuous and differentiable function of around the solution

. We can approximate around to first
order with

(6)

where the th element of the Jacobian of is given by

(7)

Now we can estimate to first order the covariance matrix of
from

(8)

This is an extremely powerful result, as (8) shows how the un-
certainty in the independent vector captured in its covariance
matrix can be propagated through complicated functions
to determine the uncertainty in the dependent vector , as ex-
pressed in its covariance matrix .

When is linear, (6) and (8) are exact. However, when is
not linear, (8) applies only when the size of , as captured
in , is sufficiently small that (6) holds. Thus, when higher
order terms in (6) dominate, as might occur near a critical point
of , (8) can fail. In our analyses, we regularly check our dom-
inant sources of error to ensure that a higher order analysis is
not required. We also used numerical Monte Carlo simulations
to confirm the calculations we present in this paper.

Sometimes it is easy to evaluate the Jacobian of by an-
alytically differentiating . However, the functions we are in-
terested in are often based on numerical algorithms or are too
complicated to easily find analytically. Thus, in practice, it is
usually easier to numerically approximate with finite-differ-
ence approximations. That is, it is often convenient to approxi-
mate the th column of with

(9)

where the th element of the vector is equal to , is small,
and all of the other elements of the vector are zero. Because
we use only to propagate uncertainties, this first-order approx-
imation to is usually adequate.

Here, we see another powerful advantage to using a covari-
ance-based description of the uncertainty in a vector: we can use
(8) and (9) to propagate uncertainties in through both analyt-
ically and numerically defined functions, as long as the func-
tions are continuous and differentiable around the solution, and
the errors themselves are small. We discuss an alternative form
of these rules in Appendix I.

VI. CONSTRUCTING

We set the solution vector equal to the mean of re-
peated measurements of the our photodiode. We constructed
the covariance matrix of from estimates of our systematic
and random uncertainties. Thus, for each of these repeated mea-
surements, we constructed a covariance matrix describing
the systematic errors in that particular measurement. We also
constructed a covariance matrix describing the random er-
rors, which manifest themselves as differences in our repeated
measurements . Then, we combined the results to estimate
the total uncertainty in our mean .

A. Systematic Uncertainty

We constructed the covariance matrices describing the
systematic uncertainties in our measurements from an analysis
of the impact of each of the physical error mechanisms in our
electrooptic sampling system on . That is, we constructed a
calibration algorithm for the electrooptic sampling
system that maps the raw measurements we perform into

...
...

. . .

(4)
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the vector characterizing the photodiode’s
response. Here, each element of is a parameter describing an
independent physical error mechanism in the electrooptic sam-
pling system. Then, using the finite difference formula of (9),
we formed the Jacobian of numerically and used it to map
the covariance matrix describing the uncertainties in
into the covariance matrix describing the uncertainties in

.

Since each of the elements of corresponds to an indepen-
dent source of error, the off-diagonal elements of vanish.
Furthermore, the diagonal elements of are just the vari-
ances of the elements of , which we can determine directly
from measurements or other considerations.

For example, as part of the calibration process, we measure
the dc resistance of the CPW load. This dc resistance plays
an important role in setting the reference impedance of the
on-wafer CPW calibration and effects the results of the mea-
surement at all frequencies.

Thus, we assigned one of the elements of to this dc resis-
tance and determined the value of the corresponding diagonal
element of from the variance of this dc resistance. In this
case, we determined this variance by monitoring the repeata-
bility of our dc resistance measurements, as described in [23].

Then, we constructed the column of the Jacobian associated
with this dc resistance from (9). We did this by changing the re-
sistance value in , calculating a perturbed solution vector, and
subtracting the nominal solution vector from the perturbed
solution vector, as is required in (9).

Repeating this procedure for each element in , we were
able to construct, column by column, the complete Jacobian
mapping errors in into . Then, we calculated for
each measurement from . To simplify the cal-
culations and bookkeeping, we set in (9) equal to the standard
uncertainty of the corresponding elements of , and then can-
celled out of the product .

We assigned an element in to account for each of the in-
dependent physical error mechanisms discussed in [23], except
for those due to the coaxial short-open-load-thru (SOLT) cal-
ibration, which we handled separately. The error mechanisms
discussed in [23] that we accounted for in this way included the
following:

• the finite response time of the electrooptic effect in the
LiTaO substrate;

• the finite temporal duration of the optical pulse;
• the finite optical-beam waist near the focal point of the

microscope at the surface of the LiTaO substrate;
• penetration and spatial variation of the electric field in the

LiTaO substrate below the CPW;
• multiple optical reflections in the substrate;
• variation of probe contact resistances in our dc resistance

measurements;
• the accuracy with which we can position the optical beam

on the wafer;
• VNA drift measured using the calibration comparison

method of [24] during the CPW scattering-parameter
measurements;

• error in the determination of the capacitance per unit
length of the CPW;

• uncertainty in the widths and lengths of the CPW;
• asymmetry in the CPW reflect;
• metal nonuniformity in the CPW.

In each of these cases, we used the variances prescribed in [23]
to set the diagonal elements of .

We were unable to adapt the analysis of the uncertainties in
the coaxial SOLT calibration used in [23] to the construction
of a covariance matrix. This is because, unlike all of the other
errors discussed in [23], the uncertainty analysis of the coaxial
SOLT calibration used in [23] was not based on an identifiable
set of independent physical mechanisms. Thus, instead of using
the analysis of [23], we developed a new VNA calibration and
uncertainty analysis compatible with our approach.

We designed our new VNA calibration around the calibration
algorithm described in [25] and four well-characterized offset
shorts and a single thru connection. This greatly simplified the
associated uncertainty analysis as we were able to find well-
documented mechanical uncertainties for these standards in [26]
and [27].

However, our VNA calibration based on the four shorts and
the thru did not perform well at low frequencies, where the dif-
ference in the reflection coefficients of the shorts becomes small.
To improve the accuracy of the VNA calibration at low frequen-
cies, we developed a two-step calibration procedure. In the first
step of the calibration procedure, we developed rational-func-
tion models for the impedance of an open and a nominal 50-
load termination based on our band-limited calibration using the
four shorts and the thru standard and the measured dc resistance
of the load. In the second step of the VNA calibration procedure,
we used the four shorts, the thru, and, at low frequencies, the
characterized open and load terminations, as calibration stan-
dards.

To integrate our VNA error analysis into the overall analysis,
we now proceed as before, assigning elements to to account
for each of the physical error mechanisms characterizing the
four shorts and the thru standard. These elements accounted for
the following:

• uncertainty in the lengths of our coaxial shorts;
• uncertainty in the inner and outer diameters of our shorts;
• uncertainty in pin depth;
• uncertainty in the conductor loss of the shorts;
• dc joint resistance in the test ports and standards;
• uncertainty in the measurement of the dc resistance of the

load termination, which we used as a fitting parameter in
the development of the rational function fit to the load;

• VNA drift measured with the calibration comparison
method of [24].

Since errors in the shorts and thru standards effect both the ra-
tional function fit and the final calibration, we introduced the
errors from each physical source in both the rational function
fit and the final calibration, preserving the correlations between
them.

Table I summarizes the magnitudes of the worst case devia-
tions of each physical error mechanism we accounted for in this
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TABLE I
PHYSICAL ERROR MECHANISMS AND THEIR WORST CASE UNCERTAINTIES IN

THE 1-mm COAXIAL CALIBRATION

way. We assumed a rectangular distribution for each of the phys-
ical error mechanisms listed in the table and, in accordance with
the recommendations in [28], calculated the associated variance
for the quantity as one third of the square of the worst case un-
certainty listed in the table.

B. Random Uncertainty

Following the recommendations in [10], we estimated the
th element of the covariance matrix describing our random

measurement errors from

(10)

where is the th element of , which is the solution
vector for the th measurement of the photodiode. Here

is the th element of , which is the
mean of the solution vectors.

We have not yet had the opportunity to perform a full analysis
of the reproducibility errors in our measurements introduced by
differences in wafers, probes, and scattering-parameter calibra-
tions. However, in the course of these 14 measurements, we did
use two different probe heads and four different SOLT and CPW
calibrations. While mixing and matching different measurement
conditions like this is not a statistically optimal way of incor-
porating variation due to these differences in the experimental
setup into our uncertainty analysis, the random measurement er-
rors we calculate do account for at least some of these long-term
reproducibility mechanisms.

C. Total Uncertainty

Finally, we estimated the covariance matrix of with

(11)

The first term in (11) is the mean of the covariance matrices
describing the systematic uncertainty in each of the

measurements. Because the systematic errors captured by
do not change very much from one measurement to another, we

Fig. 2. Correlations between the real parts of and ��� at 50 GHz and the real
parts of and ��� at the frequency on the horizontal axis.

see that the first term in (11) will not change significantly as we
increase the number of measurements .

The second term in (11) is the estimate of the covariance ma-
trix describing the effect of the random differences in , which
is the mean of the measurements. The term in the second
term accounts for the fact that we are interested in the uncer-
tainty in the mean solution vector derived from the mea-
surements , rather than the uncertainty in the measurements

themselves. This term decreases as we increase the number
of measurements .

D. Correlations

Fig. 2 plots some typical correlation coefficients relating the
real elements of as a function of frequency. The figure shows
that the covariance matrix is dense and that the correlation
coefficients are generally large. In Section VIII, we will illus-
trate the importance of maintaining the correlations captured in
the covariance matrix with some examples.

VII. CONFIDENCE INTERVALS AND REGIONS

We can now transform and its covariance matrix
through various functions and their Jacobians to derive a va-
riety of resultant vectors and associated covariance matrices

. Then, if the dimension of is not too large, we can
determine confidence regions for .

We will usually be interested in “one-at-a-time” confidence
intervals on single variables such as the magnitude or phase of a
quantity at a particular frequency, a voltage at a particular point
in time, or a transition or pulse duration. In this case, has a
dimension , and has only one element, which is the
variance of the single element of .

We only used measurements to build . Under the con-
servative assumption that the uncertainties captured in are
dominated by those in , we assign the number of degrees of
freedom of to [18]. This assumption
is conservative because the ’s were built numerically and
have an infinite number of degrees of freedom. Thus, it is pos-
sible, in fact, that the uncertainties in the dominate, and
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actually has infinite degrees of freedom, rather than
degrees of freedom.

Now, setting the number of degrees of freedom of
to , we can use the standard tables and practices rec-
ommended in [10] and [28] for calculating and expressing ex-
panded uncertainties and confidence intervals.

When is multidimensional, we use a similar procedure to
develop confidence regions (as opposed to intervals) for the ele-
ments of . If is the expected value of , the probability that

(12)

is , where is the quantile of the dis-
tribution with and degrees of freedom [18]. Following the
conservative assignment of the number of degrees of freedom
we used above, we can set to in (12).

The confidence region described by (12) describes a multidi-
mensional elliptical region in which we expect to lie. Note
that, as the number of dimensions of increases, the require-
ment represented by (12) becomes more and more stringent, as
we are requiring that all elements of simultaneously lie
within the region described by (12). As approaches , the
size of this multidimensional confidence region grows infinite.
This is a consequence of the limited information on correlations
in that we captured from the finite set of measurements that
we used to estimate . When , the number of degrees
of freedom becomes meaningless, and we can no longer state
confidence regions for .

While we can state one-at-a-time confidence intervals for the
individual elements of , the previous discussion implies that,
because , we cannot develop a -di-
mensional confidence region for the entire vector . Rather, we
must be content with our ability to state uncertainty limits and
regions for mappings of onto vectors that have much lower
dimensionality. This is a fundamental limitation of our measure-
ment-based approach to estimating .

Finally, due to the small sample size used to construct ,
we do not claim that (or ) are reliable estimates of the
true covariance matrices that may be underlying our data. That
would require the order of measurements and is
beyond our measurement capability. This problem is commonly
encountered in finance, biology, and meteorology [29]–[31].

Principal-component analysis offers one approach to ex-
tracting underlying correlations from limited data in a system-
atic manner [32]. However, this is far beyond the scope of this
work.

VIII. EXAMPLES

The covariance matrix contains a wealth of uncertainty
information. Furthermore, the rules in Section V for propagating
covariance matrices through complicated functions of give
us a powerful tool for propagating the uncertainties in our pho-
todiode measurements through a variety of instrument calibra-
tions. We will look at a few simple examples that illustrate how
to use to propagate and evaluate the one-at-a-time uncer-
tainties of quantities derived from , including temporal re-
sponses.

Fig. 3. Absolute and normalized standard uncertainties of the magnitude of
the frequency-domain spectrum of the voltage our photodiode generates across
a perfect 50-
 load when the photodiode is excited by a short optical pulse that
generates a picocoulomb of charge at its bias port.

A. Uncertainty in the Magnitude of the Elements of

As a first exercise, let us find the uncertainty in the magni-
tudes of the complex voltages in from . In this case,

(13)

where . We can differentiate (13) analytically to
obtain

(14)

or we can evaluate numerically with (9). Now the covariance
matrix of is . We can now use and the rules
of uncertainty propagation described in Section V to the un-
certainties in through further functions and signal-processing
steps.

We can also determine one-at-a-time standard uncertainties
and confidence intervals for the magnitude of the elements of .
We do this by eliminating all of the rows in except that row
corresponding to the particular magnitude we are interested in
and recalculating . Then, the variance in is the variance
of the particular magnitude corresponding to the remaining row
of , and we can calculate confidence intervals on this quantity
in the usual way. Fig. 3 plots the standard uncertainty in the
magnitudes of obtained in this way as a solid line.

B. Normalized-Magnitude Uncertainty

We can also find the uncertainty in the normalized magnitudes
of the complex voltages in from the covariance matrix .
We first define the constant equal to the total energy in the
pulse with no errors present as . Then, the
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magnitude (which includes measurement errors) at frequency
, after normalizing the total energy in the pulse to , is

(15)

Note that here we treat , which is the energy to which the pulse
is normalized, as fixed in (15), while the term in the denominator
varies as the ’s are varied.

Fig. 3 compares the one-at-a-time standard uncertainties in
the absolute and normalized magnitudes. The higher uncertainty
in the absolute magnitude at low frequencies is due to overall
scaling errors in the NIST electrooptic sampling system. Since
these overall scaling errors are highly correlated, they have a
large effect on the uncertainty in the absolute magnitude of the
voltage the photodiode delivers to a load, but a smaller effect on
the normalized voltage the photodiode delivers to a load.

This example illustrates the richness of the information con-
tained in the covariance matrix, and the ease with which we can
propagate uncertainties. Had we simply determined the standard
deviations in the individual elements of , we would not have
been able to calculate the uncertainty in the normalized magni-
tudes of the complex voltages in without more information.
However, since all of the first-order information on the uncer-
tainties and correlations in the measurements are contained in
the covariance matrix, the uncertainty information contained in
the covariance matrix can be easily propagated to find the un-
certainty of a variety of quantities derived from .

C. Temporal Voltage Delivered to a 50- Load

The Fourier transform is another important operation that we
can apply to . While 110 GHz of corrected bandwidth does
not completely characterize the temporal voltage the photo-
diode generates, applying the Fourier transform to the 110 GHz
of corrected data we obtain from our electrooptic sampling
system nevertheless illustrates uncertainty propagation to the
time domain. Furthermore, similar band-limited transforms
are useful for calibrating temporal waveform measurement
instrumentation, such as sampling oscilloscopes, that have
bandwidths lower than 110 GHz.

To illustrate uncertainty propagation through the Fourier
transform, we implemented the Fourier transform as a matrix
transformation. Since the Fourier transform is linear, it is equal
to its Jacobian, further simplifying uncertainty propagation
through it.

Fig. 4 shows the result of applying the Fourier transform to
and transforming it from the frequency domain to the time

domain. Since we truncated the spectrum of our photodiode
at 110 GHz, the plotted quantity is equal to the actual voltage
the photodiode would deliver to a perfect 50- load connected
to its output port after it has been convolved with the func-
tion , where is 110 GHz, the cutoff fre-
quency of the photodiode’s 1-mm coaxial port. This voltage is
shown as the thick solid line in Fig. 4.

The thin dashed line in Fig. 4 shows the uncertainty we cal-
culate for the temporal representation of from . It is most

Fig. 4. Temporal voltage our photodiode generates across a perfect 50-

load when the photodiode is excited by a short optical pulse that generates a
picocoulomb of charge at its bias port and its standard uncertainty.

interesting to note the peak in the uncertainty near 40 ps. As
the temporal representation of peaks near 40 ps, we certainly
expect higher uncertainty to be associated with these large volt-
ages than elsewhere. This illustrates the ability of the covariance
matrix to capture the correlations in the uncertainty of our fre-
quency-domain representation, and to properly map those fre-
quency-domain uncertainties into the correct locations in time.

The thin dashed line marked with circles in Fig. 4 illustrates
the importance of including the correlations captured in the co-
variance matrix in calculating the uncertainty in the temporal
representation of . It shows the uncertainty we would calculate
for the temporal representation of if we set the correlations
in to zero. The result of neglecting the correlations in the
calculations is immense: it spreads the overall uncertainty uni-
formly over time, grossly underestimating the uncertainty near
the main pulse at 40 ps and overestimating the uncertainty far
away from the main pulse where the voltage is small.

The arrow in Fig. 4 at about 400 ps indicates the approximate
point in time at which the first round-trip reflection between the
photodiode and the CPW resistor occurs in our electrooptic sam-
pling system. While the mismatch corrections we use almost en-
tirely eliminate this artifact of the measurement system, before
mismatch correction there is a residual reflection here with an
amplitude of about 0.2 V/pC. The residual peak in the uncer-
tainty we calculate from that remains in the calibrated re-
sponse near 400 ps is significant. It indicates the degree to which
we are unable to correct for the multiple reflections between the
photodiode and the CPW load. Of course, this residual peak in
uncertainty would be missed if we were to neglect the correla-
tions captured in , as illustrated in the figure.

D. Oscilloscope Calibration Factor

We characterized our photodiode with the NIST electrooptic
sampling system to 110 GHz, the cutoff frequency of the 1-mm
connectors at the photodiode’s electrical output port. Thus the
photodiode can be used to calibrate both frequency-domain and
temporal instruments that either do not respond to frequencies
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above 110 GHz or are used to measure signals whose energy is
limited to frequencies below 110 GHz.

As described in Appendix II, we can use the photodiode to
determine the frequency-domain magnitude and phase of the
Fourier transform of the impulse response of an otherwise ide-
ally calibrated oscilloscope that has already been corrected for
time-base errors and is operating in its linear regime. Referring
to Appendix II, we see that the voltage associated
with the forward wave that the photodiode delivers to the oscil-
loscope is given by

(16)

Here, is the voltage in that the photodiode delivers to a per-
fect 50- load, is the corresponding reflection coefficient of
the photodiode in , and is the reflection coefficient of the
oscilloscope. A comparison of , which is the voltage the os-
cilloscope measures, and allows us to determine the Fourier
transform of the impulse response of the oscilloscope to fre-
quencies as high as 110 GHz.

We can find the uncertainty in due to the uncertainty in
by constructing the Jacobian of (16) and forming the product

as before. The resulting covariance matrix will ac-
count not only for the error in and , but for the correlations
between them. This is important, as the reflection coefficient
measurements are used in the corrections we employ to deter-
mine from our electrooptic-sampling-system measurements,
correlating the errors in and .

We must also account for the uncertainty due to errors in the
measurement of the oscilloscope reflection coefficient . Typ-
ically, will be measured at NIST and measured with a dif-
ferent calibration by the user of the photodiode, and so and
will be uncorrelated. When and are uncorrelated, we can
simply construct a second Jacobian mapping errors in into er-
rors in , propagate the errors in through (16), and add the re-
sulting covariance matrix to the product that we calcu-
late in the first step of the analysis. This is the standard approach.

However, this was not entirely justified in our case, as we do
not currently have access to a second 1-mm calibration set at
NIST. Thus, we used the same calibration set for both measure-
ments and accounted for the correlations in and .

Fig. 5 shows the band-limited forward temporal voltage we
calculate from (16) that the photodiode delivers to the oscillo-
scope. The principal reflection from the oscilloscope occurs at
about 850 ps. This reflection is absent in Fig. 4.

The one-at-a-time uncertainties in we calculate from
are extremely close to those of the photodiode impulse response
except near 850 ps, where the uncertainty of increases sig-
nificantly. This increase in the temporal uncertainty of ac-
counts for the inaccuracies in the measurement of the oscillo-
scope’s reflection coefficient and reflects the degree to which
we are able to correct for the principal reflection from the scope
with our VNA measurements. Again, traditional approaches to
uncertainty analysis that do not account for correlations in the
measurements are not able to correctly map uncertainties in the
frequency domain to the correct temporal locations, such as the
position of this principal reflection at 850 ps. This is illustrated

Fig. 5. Temporal voltage that our photodiode delivers to an oscilloscope when
it is excited by a short optical pulse that generates a picocoulomb of charge at
its bias port and its standard uncertainty.

by the curve labeled “Uncertainty calculated neglecting corre-
lations” in Fig. 5, which shows the result of neglecting these
correlations in the analysis.

IX. CONCLUSION

Our covariance-based description of the uncertainties of the
NIST electrooptic sampling system allows greater flexibility in
applying the photodiodes to instrument calibration than was pre-
viously possible. In particular, there is enough information in
the covariance matrix to allow the uncertainties to be propa-
gated through Fourier and other complex transformations to the
time domain. This is exciting because this approach to repre-
senting uncertainty allows frequency-domain mismatch correc-
tions and traceable electrooptic-sampling-system calibrations to
be applied to both frequency- and time-domain instruments.
This development promises to usher in a new paradigm in the
way that high-frequency electrical instrumentation, and partic-
ularly high-frequency electrical instrumentation requiring mis-
match correction, is calibrated.

APPENDIX I
LARGE COVARIANCE MATRICES

The covariance matrix is quite large and exceeds the
maximum size matrix available in some programming environ-
ments. To minimize the size of the matrices we must deal with,
we broke the by matrix up into three

by equally sized submatrices , , and
before storing them to disk. That is, we wrote as

(17)

The submatrix in (17) captures the uncertainties in , the
submatrix captures the uncertainties in , and the submatrix

captures the correlations between and .
To use these matrices, we can either reassemble and use

(8) directly or we can rewrite (8) as

(18)
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where we have split into two equally sized submatrices and
with

(19)

Now we can expand (18) as

(20)

Equation (20) can be useful because it limits the size of the
covariance matrices that must be evaluated to solve for the co-
variance matrix in (8).

APPENDIX II
HIGH-SPEED OSCILLOSCOPE CALIBRATION

Here, we present a derivation of (16), which determines the
band-limited Fourier transform of the impulse response of
a high-speed sampling oscilloscope. These high-speed oscillo-
scopes offer a very convenient way of testing fast electrical com-
ponents that are designed to operate in a 50- electrical envi-
ronment.

A. Wave Representation

It is common to use frequency-domain forward and back-
ward wave amplitudes and normalized to a 50- reference
impedance in place of voltages and currents at microwave fre-
quencies [33]. We use the “pseudowaves” of [33], which corre-
spond to the conventional power-normalized forward and back-
ward wave amplitudes with a reference impedance of 50 [34].
These wave amplitudes have units of the square root of a Watt,
and are conventionally normalized so that the average power
transmitted across a reference plane is given by

.1

By limiting ourselves to the characterization of signals with
bandwidths below the cutoff frequency of the guiding struc-
tures we use, we are able to apply frequency-domain microwave
mismatch corrections developed for linear time-invariant sys-
tems to the oscilloscope calibration problem. Fig. 6 shows the
microwave flow diagram describing the propagation of signals
when a generator is connected directly to a high-speed sampling
oscilloscope. This diagram is a simplification of the models de-
veloped in [35] and [36]. Strictly speaking, the diagram is only
applicable if the generator and oscilloscope can be treated as
linear time-invariant circuits. This is a reasonable approxima-
tion in our case, although the techniques used to ensure that the
generator and oscilloscope can be treated this way are beyond
the scope of this paper.

The generator on the left-hand-side of the diagram in Fig. 1
is characterized by its forward-wave source amplitude and
its reflection coefficient . This wave-based representation
of the source is equivalent to the Thévenin-equivalent-circuit
and Norton-equivalent-circuit representations commonly used
to describe electrical sources at lower frequencies. References
[2] and [34] present formulas for converting between this

1Reference [1] uses a less common rms normalization in which the power p
is given by p = a � b , where a and b are the rms pseudowaves of [1]. The
rms-normalized pseudowaves of [1] are related to those used here with a =

a=
p
2 and b = b=

p
2.

Fig. 6. Microwave flow diagram describing the propagation of signals between
a generator and an oscilloscope.

wave-based representation and Thévenin and Norton equivalent
circuits.

The oscilloscope on the right-hand side of Fig. 1 is character-
ized by the Fourier transform of its impulse response and by
its reflection coefficient .

In quasi-TEM guides with a suitable choice of voltage path,
we can write the peak voltage of the “forward voltage wave”
associated with the wave amplitude as [33]

(21)

The square root of 50 in (1) converts the power-normalized
wave amplitude to a peak voltage. The voltage is the peak
voltage that the generator would generate across a perfect 50-
load. It can also be thought of as the voltage that the forward
wave would carry with it as it propagates down a perfect 50-
transmission line and can be derived by setting the normalizing
voltage real, the reference impedance to 50 , and the
backward-wave amplitude to zero in [33, eq. (55)].

Likewise, the relation between the peak voltage that the
oscilloscope measures and the wave in Fig. 1 is given by

(22)

Finally, we would like to point out that the voltage should
not be confused with the total voltage at the generator’s output
port when the impedance of the load connected to the generator
is not equal to 50 . This is because an imperfect load will
reflect some of the energy incident on it back to the generator,
and both the forward and backward waves and will then
contribute to the total voltage at the generator’s output port. The
multiple reflections between the generator and the oscilloscope
must be accounted for with a mismatch correction.

B. Mismatch Correction

We now solve for the wave amplitude . This is the ampli-
tude of the forward wave delivered to the oscilloscope by the
generator. The wave amplitudes at the generator’s output port
are related by [33], [34]

(23)

while the wave amplitudes at the input of the oscilloscope are
related by

(24)
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Since the generator and oscilloscope are connected directly to-
gether in Fig. 1, the voltages and currents are continuous across
that junction, and and . Thus, we can combine
(23) and (24) to obtain [33], [34], [36]

(25)

Finally, the oscilloscope measures the voltage given by

(26)

which reduces to (16) when the oscilloscope is excited by a pho-
todiode. We refer to in (26) as the complex frequency response
of the oscilloscope. This frequency response is the band-limited
Fourier transform of the oscilloscope’s impulse response and
accounts for the finite response time of the oscilloscope to the
signal delivered to it by the generator. It is equal to the ratio of
the voltage that the oscilloscope measures and the voltage

associated with the forward wave that the
generator delivers to the oscilloscope.
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